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Shear-driven size segregation of granular materials: Modeling and experiment
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Granular materials segregate by size under shear, and the ability to quantitatively predict the time required
to achieve complete segregation is a key test of our understanding of the segregation process. In this paper, we
apply the Gray-Thornton model of segregation (developed for linear shear profiles) to a granular flow with an
exponential shear profile, and evaluate its ability to describe the observed segregation dynamics. Our experi-
ment is conducted in an annular Couette cell with a moving lower boundary. The granular material is initially
prepared in an unstable configuration with a layer of small particles above a layer of large particles. Under
shear, the sample mixes and then resegregates so that the large particles are located in the top half of the system
in the final state. During this segregation process, we measure the velocity profile and use the resulting
exponential fit as input parameters to the model. To make a direct comparison between the continuum model
and the observed segregation dynamics, we map the local concentration (from the model) to changes in
packing fraction; this provides a way to make a semiquantitative comparison with the measured global dilation.
We observe that the resulting model successfully captures the presence of a fast mixing process and relatively
slower resegregation process, but the model predicts a finite resegregation time, while in the experiment

resegregation occurs only exponentially in time.
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I. INTRODUCTION

Granular materials have long been known to segregate by
size, shape, density, and other material properties, whether
driven by shear or vibration [1-3]. The case of size segrega-
tion in shear flow is particularly important, as it arises in
such diverse situations as industrial chute flows, rock ava-
lanches, and rotating tumblers [4—8]. Under such shear, large
particles typically rise and small particles descend. The
dominant mechanism in such cases is thought to be percola-
tion based, where the granular flow acts as a sieve through
which the small particles preferentially fall, but arguments
based on kinetic theory have been proposed as well [9,10]. A
number of groups [11-13] have developed continuum mod-
els to describe vertical size segregation within the constant
shear-rate flows typical of free-surface avalanches. The aim
of this paper is to apply a recent modification [14] of the
Gray-Thornton (GT) model [13] to a boundary-driven granu-
lar system where the shear rate is a nonlinear function of
depth. We quantitatively investigate this generalized Gray-
Thornton (GGT) model’s ability to capture experimentally
observed segregation dynamics and the associated changes in
overall packing density.

We perform experiments on binary granular mixtures of
spherical particles confined in an annular Couette geometry
(see Fig. 1). The system starts in an unstably stratified state
with small particles over large particles and progresses to the
reverse, stable, configuration as the lower boundary is ro-
tated. Key advantages of this geometry are the ability to run
continuously without the need to feed material, as would be
the case for chute flows, and the ability to start and end the
experiment in well-defined states. As is commonly the case
for sheared granular materials [15], we observe that the hori-
zontal velocity profile is not a linear function of depth as
assumed in [12,13,16], but instead decays exponentially
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away from the shearing surface. Correspondingly, the segre-
gation rate is not uniform, but is higher near the bottom
rotating plate. We use high-speed digital imaging and particle
tracking to measure the velocity profile u(z) in the experi-
ment and use the resulting fit to an exponential form as input
to the GGT model.

Kinetic sieving models of segregation [11-13] are based
on the notion that vertical size-segregation is principally
caused by small particles preferentially falling into gaps cre-
ated by the relative motion (shear) of the particles beneath
them. Secondarily, the large particles are forced upward in a
process sometimes called squeeze expulsion. In particular,
Bridgwater et al. [11] argue that the vertical velocity of small
particles due to segregation (the segregation velocity) should
be proportional to the shear rate y=|du/dz| as well as some
function of the concentration ¢ of small particles. In the
context of chute flow and avalanches, both Lun [12] and
Gray and Thornton [ 13] assume a segregation velocity which
is additionally proportional to the concentration of large par-
ticles, (1—¢), since large particles provide the gaps into
which the small particles fall. The choice of a constant of
proportionality (known as the segregation rate) comes from
an assumption of spatially constant shear rate, whereas for
many important granular systems it instead falls off exponen-
tially [15].

Since the local shear rate is set by the local horizontal
velocity, we measure u(z) directly from the experiment. In
our measurements of the horizontal velocity profile, de-
scribed in Sec. II, we observe that it falls off exponentially
away from the shearing surface, is the same for both particle
sizes, and is approximately time-independent except for an
initial transient. Using the steady-state velocity profile u(z) to
determine the shear rate, we calculate an exact solution to the
GGT model, described in May et al. [14] and summarized in
Sec. III. This solution specifies the concentration of small
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FIG. 1. (Color online) Schematic of experimental apparatus (not
to scale) showing initial configuration and coordinate system.

particles as a function of depth and time. Starting from ini-
tially segregated conditions, the particles mix via a wave that
spreads both downward, as small particles fall, and upward,
as large particles rise. After the small particles first reach the
bottom plate, they form a growing layer bounded by a shock
wave (a discontinuity in concentration) propagating upward.
Correspondingly, large particles eventually reach the top of
the annulus, and a second shock propagates downward. The
two shocks meet in finite time, after which the material is
completely resegregated.

While it is not possible to monitor the local concentra-
tion field ¢(z,) within the experiment due to the high pack-
ing density, we measure the progression of the mixing and
segregation processes via the compaction and subsequent re-
expansion of the aggregate. To relate the dynamics of the
exact solution to the experiment, we postulate that the local
concentration ¢ of small particles determines the local pack-
ing density p, as described for static packings in Kristiansen
et al. [17]. This concentration map p(¢) allows us to model
the change in the measured height H(z) of the aggregate as

a function of time. We compare this proxy height H(f) to
the time evolution of the experimentally measured height in
Sec. IV.

In Sec. V, we evaluate the successes and failures of the
GGT continuum model combined with the dilation model
described above. To make a quantitative comparison, we set
two of the three free parameters from the observed system
height and the magnitude of the transient compaction. The
third parameter is the constant of proportionality between
shear rate and segregation rate, which we set so that the
model and experiment have the same overall duration. This
segregation rate has previously been observed to vary with
such parameters as particle size ratio and confining pressure
[18]. In spite of its simplicity, we find that the GGT model
is able to capture the existence of a fast mixing process fol-
lowed by a slower resegregation process. However, the
model resegregates in finite time and does not replicate the
observed behavior from the experiment, where a completely
resegregated state is approached only exponentially in time.

II. EXPERIMENT

The experimental apparatus is an annular Couette cell
filled with a bidisperse mixture of spherical glass particles
confined by cylindrical walls at inner radius (25.5*+0.1) cm
and outer radius (29.3+0.1) cm. We apply shear via a cir-
cular bottom plate rotating at a constant frequency f
=(49*0.5) mHz, approximately 3 rpm. A heavy top plate
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FIG. 2. (Color online) (a) H(r) for 11 experimental runs (gray
lines), with thicker line representing the run for which we took
movies and measured the velocity profile. The thick black line is the
average of the 11 runs, used for comparison with the GGT model in
Fig. 7. Positions of particles (O indicates small, X indicates large)
overlaid on images taken through the window in the outer wall (b)
initially, =0 s, (c) in a mixed state, r=127 s, and (d) in the re-
segregated state, r=1820 s.

sits within the annular gap and is free to move vertically, but
is partially suspended by springs to reduce the pressure it
applies. The compressive force P applied to the particles is
(0.36 =0.008) mg, where myg is the total weight of the par-
ticles and the variation in force is due to the stretching of the
springs. The top and bottom plates have a rubberized surface
to increase friction with the particles, while the stationary
cylindrical side walls are constructed of aluminum.

At the start of each experiment, we prepare a flat layer of
2.0 kg of large particles (diameter d;=6 mm) at the bottom
of the annulus, followed by a flat layer of 2.0 kg of small
particles (dg=3 mm). This configuration is shown schemati-
cally in Fig. 1. We consolidate the layers by compression
prior to the beginning of the run, with the average initial
height H(0)=41.2 mm. In our experiments, we measure two
aspects of the dynamics: the height H(z), and the particle
velocities, which create the shear profile responsible for the
segregation. In Sec. IV, we discuss a semiquantitative
method for relating H to the degree of segregation.

Figure 2 shows the height H(z) of the top of the cell as a
function of time for several different runs under the nomi-
nally identical conditions. While the variability from run to
run is considerable (and typical of granular materials), the
important features are common to all of the runs. From the
initial normally graded configuration, the applied shear
causes the lowest (large) particles to move horizontally due
to friction with the rubberized bottom plate. As shear begins,
the material must dilate in order to deform (Reynolds dila-
tancy). After this initial rapid expansion, H(¢) provides infor-
mation about the progression of mixing/segregation in the
aggregate. Because the mixing process causes small particles
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to partially fill the voids between the large particles, the total
height of the aggregate decreases. For all runs, the height
reaches a minimum H,;, at t=80 s, with AH=~1 mm. Fur-
ther shearing serves to resegregate the particles, with the
large particles ending at the top of the cell and the small
particles at the bottom. During this process, H rises back to a
height greater than its initial value. This resegregation pro-
cess would in theory continue until there were no longer a
mixture of particles in the central region. In practice, how-
ever, the particles do not fully resegregate and a few large
particles remain within the lower layer, as can be seen in Fig.
2(d). A key advantage of measuring the segregation progress
via changes in the volume of the granular materials is that we
effectively average over the behavior of ~6X 10* particles,
rather than just the few particles visible in the window.

To measure the velocity of the particles, we observe the
outer layer through a window of approximate width 10 cm,
using a digital video camera operating at 450 Hz. We re-
corded images during three time intervals, each with an ap-
proximate duration of 10 min (a total of around 10° images),
separated by intervals of similar duration during which
images were transferred from the camera to the computer.
The system reaches a resegregated state after approximately
t‘ = 700 s.

From each image, we first identify the center of each par-
ticle by convolution with a circular kernel chosen to match
either dg or d;. We perform the convolution twice (once for
each particle-diameter) and then screen for misdetections and
double detections. Figure 2 shows particle centers for (b)
particles in the initial, normally graded configuration, (c) the
mixed state, and (d) the resegregated, inversely graded state.
Because the particular configuration visualized at the wall
only measures the state of a small portion of the system, we
use the images only for calculating the velocity profile, and
use H(t) to probe the average degree of mixing/segregation.

To characterize the shear, we are primarily interested in
the average horizontal velocity u and how it depends on
depth, time, and particle size. We assemble particle trajecto-
ries from the list of particle positions associated with each
image, considering each of the two sizes separately. For each
trajectory, we calculate the instantaneous velocity of the par-
ticle from the slope of a linear fit over a duration appropriate
to the average speed of the layer. This analysis was repeated
separately for each of the three 10 min intervals to check for
time independence; we include all images with <3100 s in
order to improve our statistics. We observed a steady-state
velocity profile for all three intervals (shown in Fig. 3), after
an initial =37 s transient which is excluded from the analy-
sis. We observed that u(z) was approximately the same for
both large and small particles.

We measure the average horizontal velocity as a function
of depth by dividing the ensemble of trajectories into a dis-
crete set of bins centered at positions z;. Within each bin, we
plot a probability distribution of the velocities and fit a pa-
rabola to the peak. This peak value is a good estimate for the
mean of the (symmetric) velocity distribution, and has the
advantage of being insensitive to false detections at small
values of u which would otherwise skew the average. This
maximally likely velocity, u(z;), is plotted in Fig. 3, with the
width of the distribution at half the height of the peak repre-
sented by the horizontal bars for each z;.
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FIG. 3. (Color online) (a) Measured velocity profile u(z,) (@)
for full cell height, with boundary layers of thickness d; above and
below the dashed horizontal lines which bound the modeled region.
Nondimensional height variable z is scaled so that z=0 at the bot-
tom dashed line and z=1 at the top line. (b) Dimensionless u(z;)
with velocities scaled by u=5.5 mm/s so that u(0)=1. The dashed
lines correspond to those in (a). The solid curve is the fit to Eq. (1).
Bars represent width of the velocity distribution at half the height of
the peak.

Since the segregation is driven by shear in the GGT
model, we calculate the experimental shear rate (z)
=|du/ dz| from velocity data by finite differences, shown in
Fig. 4. Note that the bottom and top layers, of depth approxi-
mately d;, show dramatically higher shear rates than the
bulk. As a result, these regions quickly accumulate small and
large particles, respectively. In the figures, we mark the
boundaries between the bulk and the two layers by horizontal
dashed lines. In order to model the long-term mixing and
resegregation, we focus on the central region of the flow
where the segregation process is slower. Since the top and
bottom layers form quickly, there is little flux into or out of
this region. For comparison with the model, we scale the z
axis so that z=0 at the bottom of this central region and
z=1 at the top. Within this region, we observe that the ve-
locity profile is well described by an exponential of the form

u(z) =uge™ + ¢, (1)

where \ is related to the width of the shear band, uy+c is
the velocity at z=0, and ¢ is a constant representing solid-
body rotation. The fit to this form is plotted as a solid line in
Fig. 3(b), scaled so that u(0)=1. The fit parameters are
A=(0.205%0.01), uy=(0.87=0.04), and ¢=(0.13%=0.07).

To obtain (z) for use in the model, we differentiate u(z)
in Eq. (1) and find
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FIG. 4. (Color online) (a) Dimensionless shear rate y=|du/dz|
(®) on logarithmic axis over full cell height, with dashed lines
showing same boundary layers as in Fig. 3. (b) y=|du/dz| within
the region z € [0, 1], on linear axes. Solid line is the fit from Fig. 3,
plotted as Eq. (2).

#2) = %e-“. 2)

This function is plotted in Fig. 4(b) for comparison with the
experimentally determined profile obtained by finite differ-
encing. In Sec. III, we will relate the local segregation rate to
the parameters u, and A.

III. SEGREGATION MODEL

We aim to evaluate the ability of the GGT model [14] to
describe the segregation dynamics in these experiments. This
continuum model consists of an equation for the conserva-
tion of mass of each particle size, but no packing density (p)
or particle length scale. Instead, each point in space is simul-
taneously occupied by both a concentration ¢ of small par-
ticles and a concentration 1— ¢ of large particles, as in mix-
ture theory. A key length scale comes from the width of the
shear band (a few particle diameters); the time scale is set by
the segregation rate and the vertical size of the system. How-
ever, real granular systems compact and dilate during the
segregation [as seen in Fig. 2(a)]. Additionally, granular
shear bands are known to exhibit a lower packing density
than the bulk. Due to a lack of a physical packing density p,
the GGT model cannot capture such dynamics. Thus, in Sec.
IV, we propose and evaluate a method for modeling the
physical packing density p via its relationship to ¢. This
allows us to relate spatial variations in ¢ to changes in the
volume of the sample as a function of time. Since the hori-
zontal cross section of the sample is constant, the volume
predicted by the model can be compared directly to the ex-
perimentally measured height H(z) of the top plate.
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The GT conservation of mass equation is [13]

ap 9

J 0 J
ot ;(dﬂt) + 5(¢v) + a—z(¢W) + ﬂ—z[q(z)¢(¢— 1)]=0,

3)

where ¢=(x,y,z,1) is the concentration of small particles
at position (x,y,z) and time z, the velocity (u,v,w) is the
bulk velocity of small particles, and all variables are dimen-
sionless. Kinetic sieving is modeled by a modification wy
=q(¢—1) to the vertical component w of bulk velocity, in
which ¢=¢(z) is the local (dimensionless) segregation rate.
The equation incorporates the mechanical transport known as
kinetic sieving, but does not include diffusion due to random
particle motion. Including diffusion would have the effect of
smoothing the solution without affecting its overall structure.
Since the Cole-Hopf transform used in Gray and Chugunov
[19] does not apply to the GGT model, we instead consider
the diffusionless case in order to make use of an analytical
result [14].

We assume that the components v,w of the bulk velocity
(in the y,z directions, respectively) are negligible. That is,
we assume there is essentially no motion across the flow, and
that the vertical component of velocity of small particles is
dominated by the effect of segregation. In the annular Cou-
ette geometry of the experiment, the flow is uniform in the x
direction (the angular direction); we assume u=u(z) is inde-
pendent of horizontal position (x,y) and time ¢. Finally, we
assume that the segregation rate ¢(z) depends only on the
vertical variable z and is proportional to the shear rate ¥(z),

Up

QOESI- (4)

q(z) =s¥(z2) = goe™,

We refer to the dimensionless parameter s as the segregation
parameter. In practice, it sets a time scale for the segregation,
as we discuss below when comparing the model to the ex-
periment. Note that both ¢ and s are proportional to the
gravitational acceleration g, as described in Gray and Thorn-
ton [13]. In previous experiments, we observed that the time
scale of both the mixing and segregation processes is a func-
tion of particle size ratio and confining pressure [18].

For small (v,w), the model (3) reduces to the scalar con-
servation law

¢ d

—+ —|ql(z -1)]=0. 5
o+l d(- 1) 5)
We set an initial condition corresponding to the beginning
experimental configuration of a layer of large particles above
a layer of small particles,

0’ 0 < Z < Z()?
,0)= 6
with zo=%. Boundary conditions

$0.0)=1, ¢(1,0)=0 (7)

ensure that there is no flux of the particles through the upper
and lower boundaries.
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In May et al. [14], we constructed the solution of Eq.
(5)—(7) using the method of characteristics and shock waves.
For early times, ¢ varies continuously from ¢=0 to ¢=1 in
an expanding region, as the large and small particles mix
together. Mathematically, this is a rarefaction wave solution
of the PDE, the terminology deriving from rarefaction or
expansion waves in gas dynamics [20]. The solution in the
rarefaction wave is characterized by a pair of equations

¢(Z7t) == 00t¢0(1 - ¢0)e_zo/}\ + (]50, (Sa)

e === ¢, (1 = B,)e N o) + (2, = 1)t
(8b)

where 0y=¢gy/\. In these equations, 0= ¢y =1 labels a spe-
cific characteristic at r=0,z=zg; ¢o(z,f) can be found by
solving the quadratic Eq. (8b), and choosing the relevant
solution. Then Eq. (8a) is an explicit formula for ¢(z,?).

The rarefaction reaches the bottom and top boundaries
when the characteristics ¢=1, ¢=0 reach z=0,z=1, respec-
tively. This corresponds to the first small particle reaching
the bottom plate and the first large particle reaching the top
plate. These events occur at times

o= e o), =g, (o)
90 q0

respectively. Subsequently a layer of small particles grows
from z=0, and a layer of large particles grows from z=1. The
interfaces z=I"y(r), z=I";(r) between the rarefaction and
these layers are shock wave solutions of the conservation law
(5), and consequently evolve according to the Rankine-
Hugoniot condition, which for Eq. (5) is a differential equa-
tion for each shock,

L) =q[To(0]p[To(0),2], t>1y, Tyty) =0,
(10a)
D@0 =q[T (0N (1), ]]- 1}, t>1, Ti()=1.
(10b)

When these shocks meet, resegregation is complete, and the
solution consists of a stationary shock separating the upper
layer of large particles from the lower layer of small par-
ticles. By mass conservation, the position of the interface is
z=1-2z4. A contour plot of the solution corresponding to pa-
rameter values calculated from the experimental data is
shown in Fig. 5.

IV. COMPARISON OF MODEL AND EXPERIMENT

In the experiment, the height H(f) initially increases due
to Reynolds dilatancy, then decreases sharply as the material
mixes [see Fig. 2(a)]. Subsequently, H(r) increases at a
slower rate as the material resegregates. The GGT model has
no inherent way of capturing such dynamics, since the field
¢ only measures the local concentration of small particles
relative to large, not the packing density p.

In this section, we relate the mixing and resegregation
stages in the height evolution to predictions of the model (5)
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t
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FIG. 5. Numerical solution of the initial value problem Eq.
(5)—(7), with parameters uy=0.866, A=0.205, zo=%. For this plot,
we set the segregation parameter s=16.2 so that t=1,=1 is the (non-
dimensional) time at the final, fully segregated state.

shown in Fig. 5 by introducing a relationship between ¢ and
p. Mathematically, we have a solution ¢(z,7) specified at
each point z in the fixed spatial domain 0 =z=1, and at each
time 7. However, the spatial extent of the physical domain
varies with time due to the changes in height H(7); the physi-
cal vertical coordinate zH(r) must expand and contract to
follow these dynamics.

To model changes in p, we note that a static granular
material at different concentrations ¢ of small particles will
have a different packing density. Monodisperse (¢=0 or ¢
=1) systems pack more loosely than bidisperse mixtures
where small particles can partially fill gaps between the large
particles. The local packing density p is the ratio of the solid
local volume occupied by the mixture of particles to the total
local volume, i.e., including void space. The total volume of
the annular region is the product of the cross sectional area A
and the position H of the top plate. For a local solid volume
of particles dV, across a cross section of the annulus, in a
horizontal layer of small (physical) thickness dh, we write

dv dv
p=—2%, or dh=—2. (11)
Adh Ap

Since the physical domain is expanding and contracting
while filled by a fixed volume V), of particles, we can also
write dV,,=V,dz, where dz is the height element in the model
domain, 0=z=1. An alternative reading of this relationship
is that for each dz there will be a local contribution to H(r)
which depends on the local p (which in turn depends on the
local ¢).

In order to convert from the model domain (z) to the
physical domain (a proxy height H), we integrate Eq. (11)
over the whole system,

o H(r) A I
Ho fo M=% ) oo 1P

For simplicity, we have assumed that the local packing den-
sity p=p(¢) depends only on the local concentration ¢(z,1)
and not on other variables. We note that in Eq. (12), % has
units of length, and the integral over dz is nondimensional.
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FIG. 6. (Color online) (a) Concentration map specified by Eq.
(13). (b) Contour plot of H,,—H,;, (solid lines) and AH—AH
(dashed). Symbol @ marks the intersection of the two zero contours
at V,/(Appmin)=42.0 mm and Ap/py,,=0.072.

Another way to interpret this equation is that the integral
calculates the height of the sample in the mathematical

model and the coefficient %ﬂ relates the model height H (1) to
the physical height H(z).

To determine an appropriate function p(¢), we first con-
sider the monodisperse cases in which ¢=0 or ¢=1. In these
cases, the lower limit for p is known as random loose pack-
ing, (p®tP~0.55) and the upper limit as random close pack-
ing (pRP~0.64) [21,22]. However, for bidisperse mixtures,
the packing density depends on the relative composition of
the mixture. Since small particles can fit within the spaces
between large particles, the packing density is larger for a
bidisperse mixture than for a monodisperse sample. Indeed,
the maximum packing density for a bidisperse mixture with
this size ratio has been observed to be around pR¢"?'=0.67
to 0.69, depending on the method used [17,23,24].

Data from several numerical and experimental studies
[17,25,26] of the random close packing of a static bidisperse
mixture of spheres supports an approximately triangular
shape [see Fig. 6(a)] for the concentration map p(¢), with a
maximum at ¢,=0.275. The function

pmin+Ap$’ d)S ¢c’

p(p(z,1) = m+ApllT_¢%’ > .,

(13)

falls off, by an amount Ap, to minimum packing density pi,
at ¢=0,1. Kristiansen er al. [17] report a value of p;,
=0.628, which is below both the monodisperse and bidis-

perse pRCP.
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Note, however, that there is a significant difference be-
tween the conditions under which these studies determined
the packing density, and the conditions of our experiments:
our measurements take place in a sheared system rather than
a static one. The packing density for sheared granular mate-
rials is typically less than for static packings, due to Rey-
nolds dilatancy. However, we are not aware of any measure-
ments, analogous to those reported in Kristiansen er al. [17],
for p(¢) in sheared granular materials. (One can imagine that
segregation in fact makes such measurements rather chal-
lenging.) Therefore, we must estimate the values of p,;, and
Ap in the concentration map [Eq. (13)] for our bidisperse
mixture of granular materials under shear. We expect that the
value of p,,;, may be less than the value found in Kristiansen
et al. [17] due to the shear, but is probably not less than the
random loose packing limit for monodisperse spheres, pf-F.
Therefore, we consider 0.55<p,;,<0.64 as a reasonable
range of values. Typical reported values of Ap range from
0.025 to 0.063 [17]. Since pRCF¥" provides a larger upper
limit for bidisperse mixtures, we consider a large range of
values, 0.02<Ap<0.14.

Substituting Eq. (13) into Eq. (12), we observe that there
are only two free parameters: Av sets the overall height of

the system and A2 sets the amount of compaction/expansion.

'min

From measurements of apparatus dimensions and particle

sizes, we find %:(24.2i1.2) mm. This range, together
with the ranges for p and Ap given above, predict that we
should consider parameters 37 =< p” <44 and 007<—p—

'min Prmin

=0.26. To select the values which best capture the compac-
tion and expansion process, we perform the integral [Eq.

(12)] for pairs of (A—ZL , pA‘%) values, and determine the result-

ing H,i, and AH. In Fig. 6, we show contour plots of the
difference between the experimentally measured values and
the proxy-calculated value over this full parameters range.
The best parameter choice lies at the intersection of the two
zero-contour lines. We find these values to be —L =42.0 and
Ef— 0.072. The first parameter is to be expected given the
height of the system in Fig. 2, and the second is at the lower
end of the expected range of values.

A third free parameter is the segregation parameter s in
Eq. (5) that effectively sets the time scale for the dynamics.
Specifically, we choose s=0.023 to scale the ending time for
the solution of the initial value problem to agree with the
experimentally determined time 7,=700 s. Figure 7 provides
a direct comparison of the experiment and the model over
this time interval. We observe that the proxy height decreases
more rapidly than it climbs, in agreement with the experi-
mentally observed H(r); this feature arises without including
separate mixing and segregation rates in the model.

The micromechanical origins of this property remain to be
investigated in future work. In addition, the rate at which it
decreases is close to the observed rate. At later times, the
shapes of H(¢) and H(t) no longer agree, with H(t) exhibiting
both a flatter minimum and a faster resegregation rate. This
is to be expected from the numerical solution of Fig. 5, since
over a substantial portion of the evolution, the width of the
rarefaction wave (shaded in the figure), in which the small
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FIG. 7. (Color online) Comparison of the experimentally mea-

sured H(7) (solid line, see Fig. 2) and the calculated proxy height H
(dashed line) for the parameters given in Fig. 6.

and large particles are mixed, is not changing significantly.

Consequently, the integral (12) giving H(r) will be nearly
constant in time over this part of the evolution, no matter
what the choice for the concentration map p(¢). It is particu-
larly notable that the model solution predicts resegregation in
finite time, in contrast to the exponential approach to reseg-
regation observed in the experiment [18].

V. CONCLUSIONS

We have performed quantitative experiments to compare
predictions for a recent extension [14] of the Gray-Thornton
model of granular segregation [13] to a flow in which the
shear rate is nonconstant. In order to account for the ob-
served dilation, this comparison additionally requires the
construction of a model connecting the local concentration of
small and large particles to changes in the local packing den-
sity (the concentration map). When these two elements are
combined, we can compare the temporal evolution of the
height of the segregating system to a proxy height calculated
from the continuum model. Several features of the experi-
mentally measured height dynamics H(z) are well-captured
by the proxy height: (1) a fast mixing time scale is followed
by a much slower resegregation time scale, (2) we can model
the compaction and re-expansion process using reasonable
parameter values in the concentration map, and (3) the slope
of the height curve during the mixing phase is in approxi-
mate agreement with that of the model.

PHYSICAL REVIEW E 81, 051301 (2010)

Some prominent features are missing from the model:
there is no means to account for Reynolds dilatancy, and the
model segregates in finite time rather than exponentially ap-
proaching a final, resegregated state. This latter point of dis-
agreement shows the limitation of using a continuum
mixture-theory model for a discrete process, especially
where the number of discrete objects (the particles) is com-
paratively small. In the experiment, it is easy to see how this
finite-size effect takes over after the continuum model pre-
dicts complete segregation. Once most of the large particles
have reached the upper layer, it becomes increasingly diffi-
cult for the few large particles remaining in the lower region
containing mostly small particles to segregate to the upper
layer. It may be that when large particles do not have large
particle neighbors, the sieving of small particles is sup-
pressed due to the scarcity of gaps to fall into. In fact, some
of the large particles never make it to the upper layer, even
after runs of several days duration, instead remaining trapped
among the small particles. Even for a larger number of par-
ticles, the accuracy of a continuum model might not improve
since the width of the shear band scales approximately with
the particle size (usually 2-10 particles). Thus, the fraction
of the system contained within the shear band would become
negligible in the limit of small particle size. Second, granular
materials often fail to self-average: no known length scale
exists at which it is accurate to homogenize a dense granular
system.

Despite the differences between the dynamics of the ex-
perimental and proxy heights, the proxy height calculated
from this simple continuum model captures the qualitative
features of the experimental height time series. We have ex-
tended the Gray-Thornton model, which was developed for
the case of an avalanche (uniform shear), to model nonuni-
form shear, as occurs in a one-dimensional configuration in
an annular Couette cell. It is noteworthy that a simple con-
tinuum model applied to a small scale granular system suc-
cessfully captures the main phenomena of mixing and reseg-
regation.
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